80 Interesting Facts About Pigeon


Pigeon , little Girl

80 Interesting Facts About Pigeon

  • Pigeons feed in flocks and will consume seeds, fruits, and rarely invertebrates, although can subsist just fine on street scraps.
  • Chicks fledge (leave the nest) in 25-32 days (45 days in midwinter).
  • The male provides nesting material and guards the female and the nest.
  • The young are fed pigeon milk, a liquid/solid substance secreted in the crop of the adult (both male and female) which is regurgitated.
  • More eggs are laid before the first clutch leaves the nest.
  • Pigeons require about 1 ounce (30 ml) of water daily. They rely mostly on free-standing water but they can also use snow to obtain water.
  • The average pigeon requires 30 grams of dry matter per day, roughly 10% of their body weight.
  • Pigeons are monogamous and typically mate for life.
  • Female pigeons can reach sexual maturity as early as 7 months of age.
  • Pigeons build a flimsy platform nest of straw and sticks, put on a ledge, undercover, often located on the window ledges of buildings.
  • Eight to 12 days after mating, the females lay 1 to 3 (usually 2) white eggs which hatch after 18 days.
  • Breeding may occur in all seasons, but peak reproduction occurs in the spring and fall. A population of pigeons usually consists of equal numbers of males and females. When populations suddenly decrease, pigeon production increases and will soon replenish the flock.
  • In captivity, pigeons commonly live up to 15 years and sometimes longer. In urban populations, however, pigeons seldom live more than 2 or 3 years. Natural mortality factors, such as predation by mammals and other birds, diseases, and stress due to lack of food and water, reduce pigeon populations by approximately 30% annually.
  • One of the most effective and humane ways of pigeon control is the Ovocontrol birth control program, which naturally decreases the pigeon population.
  • In a 2017 Current Biology study, researchers showed captive pigeons a series of digital lines on a computer screen for either two or eight seconds. Some lines were short, measuring about 2.3 inches across; others were four times longer. The pigeons were trained to evaluate either the length of the line or how long it was displayed. They found that the more time a line was displayed, the longer in length the pigeon judged it to be. The reverse was true too: If the pigeons encountered a long line, they thought it existed in time for a greater duration. Pigeons, the scientists concluded, understand the concepts of both time and space; the researchers noted: "similar results have been found with humans and other primates."
  • It's thought that humans process those concepts with a brain region called the parietal cortex; pigeon brains lack that cortex, so they must have a different way of judging space and time.
  • The birds can do this even if they've been transported in isolation—with no visual, olfactory, or magnetic clues—while scientists rotate their cages so they don't know what direction they're traveling in. How they do this is a mystery, but people have been exploiting the pigeon's navigational skills since at least 3000 BCE when ancient peoples would set caged pigeons free and follow them to nearby land.
  • Nikola Tesla was another great mind who enjoyed pigeons. He used to care for injured wild pigeons in his New York City hotel room. Hands down, Tesla's favorite was a white female - about whom he once said, "I loved that pigeon, I loved her as a man loves a woman and she loved me. When she was ill, I knew and understood; she came to my room and I stayed beside her for days. I nursed her back to health. That pigeon was the joy of my life. If she needed me, nothing else mattered. As long as I had her, there was a purpose in my life." Reportedly, he was inconsolable after she died.
  • Their navigational skills also make pigeons great long-distance messengers. Sports fans in ancient Greece are said to have used trained pigeons to carry the results of the Ancient Olympics. Further east, Genghis Khan stayed in touch with his allies and enemies alike through a pigeon-based postal network.
  • In 1964, scientists in Holmdel, New Jersey, heard hissing noises from their antenna that would later prove to be signals from the Big Bang. But when they first heard the sound, they thought it might be, among other things, the poop of two pigeons that were living in the antenna. "We took the pigeons, put them in a box, and mailed them as far away as we could in the company mail to a guy who fancied pigeons," one of the scientists later recalled. "He looked at them and said these are junk pigeons and let them go and before long they were right back." But the scientists were able to clean out the antenna and determine that they had not been the cause of the noise. The trap used to catch the birds (before they had to later be, uh, permanently removed) is on view at the Smithsonian Air & Space Museum.
  • In a life-or-death situation, a pigeon's survival could depend upon its color pattern: Research has shown that wild falcons rarely go after pigeons that have a white patch of feathers just above the tail, and when the predators do target these birds, the attacks are rarely successful.
  • To figure out why this is, Ph.D. student Alberto Palleroni and a team tagged 5235 pigeons in the vicinity of Davis, California. Then, they monitored 1485 falcon-on-pigeon attacks over a seven-year span. The researchers found that although white-rumped pigeons comprised 20 to 25 percent of the area's pigeon population, they represented less than 2 percent of all the observed pigeons that were killed by falcons; the vast majority of the victims had blue rumps. Palleroni and his team rounded up 756 white- and blue-rumped pigeons and swapped their rump feathers by clipping and pasting white feathers on blue rumps, and vice versa. The falcons had a much easier time spotting and catching the newly blue-rumped pigeons, while the pigeons that received the white feathers saw predation rates plummet.
  • Japanese psychologist Shigeru Watanabe and two colleagues earned an Ig Nobel Prize in 1995 for training pigeons, in a lab setting, to recognize the paintings of Claude Monet and Pablo Picasso and to distinguish between the painters. The pigeons were even able to use their knowledge of impressionism and cubism to identify paintings of other artists in those movements. Later, Watanabe taught other pigeons to distinguish watercolor images from pastels. And in a 2009 experiment, captive pigeons he'd borrowed were shown almost two dozen paintings made by students at a Tokyo elementary school, and were taught which ones were considered "good" and which ones were considered "bad." He then presented them with 10 new paintings and the avian critics managed to correctly guess which ones had earned bad grades from the school's teacher and a panel of adults. Watanabe's findings indicate that wild pigeons naturally categorize things on the basis of color, texture, and general appearance.
  • In a 2016 study, scientists showed that pigeons can differentiate between strings of letters and actual words. Four of the birds built up a vocabulary of between 26 and 58 written English words, and though the birds couldn't actually read them, they could identify visual patterns and therefore tell them apart. The birds could even identify words they hadn't seen before.
  • A few pigeon breeds have fuzzy legs—which hobbyists call "muffs"—rather than scaly ones. According to a 2016 study, the DNA of these fluffy-footed pigeons leads their hind legs to take on some forelimb characteristics, making muffed pigeon legs look distinctly wing-like; they're also big-boned. Not only do they have feathers, but the hindlimbs are somewhat big-boned, too. According to biologist Mike Shapiro, who led the study, "pigeons' fancy feathered feet are partially wings."
  • Pigeons and their feces can cause damage to structures and represent health and safety risks. There is a range of methods to control them. Our detailed guide “How to Get Rid of Pigeons” addresses all the different control methods and describes them in some detail. The damage and risk from pigeons typically fall into these categories:
  • Pigeon droppings deface and accelerate the deterioration of buildings and increase the cost of maintenance. Large amounts of droppings may kill vegetation and produce an objectionable odor. A flock of just 100 pigeons can produce up to 4,800 pounds of guano, annually.
  • Pigeon manure deposited on park benches, statues, cars, and unwary pedestrians is an aesthetic problem. Around grain handling facilities, pigeons consume and can contaminate large quantities of food destined for human or livestock consumption.
  • Pigeons can carry and spread diseases to people and livestock through their droppings. Additionally, under the right conditions, pigeon manure may harbor airborne spores of the causal agent of histoplasmosis, a systemic fungus disease that can infect humans.
  • Pigeons are found to some extent in nearly all urban areas around the world. It is estimated that there are 400 million pigeons worldwide and that the population is growing rapidly together with increased urbanization. The population of pigeons in New York City alone is estimated to exceed 1 million birds.
  • Wild/feral rock pigeons reside in all 50 states, which makes it easy to forget that they're invasive birds. Originally native to Eurasia and northern Africa, the species was (most likely) introduced to North America by French settlers in 1606. At the time, a different kind of columbiform—this one indigenous—was already thriving there: the passenger pigeon (Ectopistes migratorius). As many as 5 billion of them were living in America when England, Spain, and France first started colonizing, and they may have once represented anywhere from 25 to 40 percent of the total U.S. bird population. But by the early 20th century, they had become a rare sight, thanks to overhunting, habitat loss, and a possible genetic diversity issue. The last known passenger pigeon—a captive female named Martha—died on September 1, 1914.
  • According to one study, they're more efficient multitaskers than people are. Scientists at Ruhr-Universitat Bochum put together a test group of 15 humans and 12 pigeons and trained all of them to complete two simple jobs (like pressing a keyboard once a light bulb came on). They were also put in situations wherein they'd need to stop working on one job and switch over to another. In some trials, the participants had to make the change immediately. During these test runs, humans and pigeons switched between jobs at the same speed.
  • But in other trials, the test subjects were allowed to complete one assignment and then had to wait 300 milliseconds before moving on to the next job. Interestingly, in these runs, the pigeons were quicker to get started on that second task after the period ended. In the avian brain, nerve cells are more densely packed, which might enable our feathered friends to process information faster than we can under the right circumstances.
  • Only mammals produce genuine milk, but pigeons and doves (along with some other species of birds) feed their young with something similar—a whitish liquid filled with nutrients, fats, antioxidants, and healthy proteins called "crop milk." Both male and female pigeons create the milk in the crop, a section of the esophagus designed to store food temporarily. As is the case with mammal milk, the creation of crop milk is regulated by the hormone prolactin. Newly-hatched pigeons drink crop milk until they're weaned off it after four weeks or so. (And if you've ever asked yourself, "Where are all the baby pigeons?" we have the answer for you right here.)
  • We've already established that pigeons are excellent at differentiating between artists and words, but a 2015 study revealed they can also distinguish between malignant and benign growths in the right conditions. Researchers at the University of California Davis Medical Center put 16 pigeons in a room with magnified biopsies of potential breast cancers. If the pigeons correctly identified them as either benign or malignant, they got a treat, According to Scientific American.
  • "Once trained, the pigeons' average diagnostic accuracy reached an impressive 85 percent. But when a "flock sourcing" approach was taken, in which the most common answer among all subjects was used, group accuracy climbed to a staggering 99 percent, or what would be expected from a pathologist. The pigeons were also able to apply their knowledge to novel images, showing the findings weren't simply a result of rote memorization."
  • Though most of this list focuses on the rock pigeon, there are 308 living species of pigeons and doves. Together, they make up an order of birds known as the Columbiformes. The extinct dodo belonged to this group as well.
  • Flightless and (somewhat) docile, dodos once inhabited Mauritius, an island near Madagascar. The species had no natural predators, but when human sailors arrived with rats, dogs, cats, and pigs, it began to die out, and before the 17th century came to a close, the dodo had vanished altogether. DNA testing has confirmed that pigeons are closely related to the dodo, and the vibrant Nicobar pigeon (above) is its nearest genetic relative. A multi-colored bird with iridescent feathers, this near-threatened creature is found on small islands in the South Pacific and off Asia. Unlike the dodo, it can fly.
  • A common sight in urban areas around the world, the pigeon is not native to North America.  Rather, pigeons were introduced into North America in the early 1600s. City buildings and window ledges mimic the rocky cliffs originally inhabited by their ancient ancestors in Europe.
  • The pigeon has a long history of association with humans, having been used for food and entertainment for over 5,000 years. Escaped pigeons from breeders readily form flocks, and other stray birds may join them, thus becoming a feral population. Because of their domestic roots, and because people have bred pigeons for many different colors and accessories, feral pigeons can have a variety of feathered looks.
  • Pigeons are renowned for their outstanding navigational abilities. They use a range of skills, such as using the sun as a guide and an internal ‘magnetic compass’. A study at Oxford University found that they will also use landmarks as signposts and will travel along man-made roads and motorways, even changing direction at junctions.
  • Pigeons are highly sociable animals. They will often be seen in flocks of 20-30 birds.
  • Pigeons mate for life and tend to raise two chicks at the same time.
  • Both female and male pigeons share the responsibility of caring for and raising young. Both sexes take turns incubating the eggs and both feed the chicks ‘pigeon milk’ – a special secretion from the lining of the crop which both sexes produce.
  • Pigeon-breeding was a common hobby in Victorian England for everyone from well-off businessmen to average Joes, leading to some fantastically weird birds. Few hobbyists had more enthusiasm for the breeding process than Charles Darwin, who owned a diverse flock, joined London pigeon clubs, and hobnobbed with famous breeders. Darwin's passion for the birds influenced his 1868 book The Variation of Animals and Plants Under Domestication, which has not one but two chapters about pigeons (dogs and cats share a single chapter).
  • Pigeons' homing talents continued to shape history during the 20th century. In both World Wars, rival nations had huge flocks of pigeon messengers. (America alone had 200,000 at its disposal in WWII.) By delivering critical updates, the avians saved thousands of human lives. One racing bird named Cher Ami completed a mission that led to the rescue of 194 stranded U.S. soldiers on October 4, 1918.
  • Close observation revealed that the white patches distract birds of prey. In the wild, falcons dive-bomb other winged animals from above at high speeds. Some pigeons respond by rolling away in midair, and on a spiraling bird, white rump feathers can be eye-catching, which means that a patch of them may divert a hungry raptor's focus long enough to make the carnivore miscalculate and zip right past its intended victim.
  • Pigeons are incredibly complex and intelligent animals. They are one of only a small number of species to pass the ‘mirror test’ – a test of self-recognition. They can also recognize each letter of the human alphabet, differentiate between photographs, and even distinguish different humans within a photograph.
  • Pigeons have excellent hearing abilities. They can detect sounds at far lower frequencies than humans are able to, and can thus hear distant storms and volcanoes.
  • Despite the social perception as dirty and disease-ridden, pigeons are actually very clean animals and there is very little evidence to suggest that they are significant transmitters of disease.
  • Pigeons and humans have lived in close proximity for thousands of years. The first recordings of this date back to Mesopotamia, modern Iraq, in 3000bc.
  • Although pigeon droppings are seen by some as a problem in modern society, a few centuries ago pigeon guano was seen as extremely valuable. It was viewed as the best available fertilizer and armed guards would even stand by dovecotes (pigeon houses) to stop others from taking the droppings.
  • Pigeons can fly at altitudes up to and beyond 6000 feet, and at an average speed of 77.6 mph. The fastest recorded speed is 92.5 mph.
  • Pigeons are fed by many members of different religions including Muslims, Hindus, and Sikhs for spiritual reasons. Some older Sikhs will ceremoniously feed them in honor of Guru Gobind Singh, a high priest who was renowned as a friend to pigeons.
  • The common city pigeon (Columba livia), also known as the rock pigeon, might be the first bird humankind ever domesticated. You can see them in art dating back as far as 4500 BCE in modern Iraq, and they've been a valuable source of food for thousands of years. 
  • The rock pigeon makes a flimsy nest, but it often reuses the same location repeatedly, even building a new nest on top of the last one. Because the pigeons do not try to remove the feces of their nestlings, the nest becomes a sturdy, mud-like mound that gets larger over time.
  • Homing pigeons are well known for their ability to find their way back home from long distances and at high speed. Despite these demonstrated abilities, feral pigeons are rather sedentary and rarely leave their local areas. In fact, when relocated involuntarily, they can return – sometimes within hours – to their original location.
  • Sexes look nearly identical, although males are larger and have more iridescence on their necks.
  • Juveniles are very similar in appearance to adults but duller and with less iridescence.
  • Pigeons are highly dependent on humans to provide them with food and sites for roosting, loafing, and nesting. They are commonly found around farmyards, grain elevators, feed mills, parks, city buildings, bridges, and other structures, although they can live anywhere where they have adequate access to food, water, and shelter.
Friends, hope you liked this post of our Interesting Facts About Pigeon. If you liked this post, then you must share it with your friends and Subscribe to us to get updates from our blog. Friends, If you liked our site FactsCrush.Com, then you should Bookmark it as well.

Post a Comment

0 Comments